1 Preliminaries: fixed points of homographies

We note that $\operatorname{PSL}_{2}(\mathbb{R})=\mathrm{PGL}_{2}^{+}(\mathbb{R})$, since any real matrix with determinant >0 is homothetic to a unique matrix with determinant 1. The group $\mathrm{PSL}_{2}(\mathbb{R})$ acts on $\mathbb{P}^{1}(\mathbb{C})$ by homographies: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot z=\frac{a z+b}{c z+d}$. Moreover, since γ is real, we have $\overline{\gamma \cdot z}=\gamma \cdot \bar{z}$. This means that it is enough to look at the action of $\mathrm{PSL}_{2}(\mathbb{R})$ on the quotient of $\mathbb{P}^{1}(\mathbb{C})$ by complex conjugation, which is $\mathcal{H} \cup \mathbb{R} \cup\{\infty\}$.

The fixed points for the homographic action of γ correspond to (complex) eigenspaces of γ.
Proposition 1. Two matrices $\gamma, \gamma^{\prime} \in \operatorname{PGL}_{2}(\mathbb{R})$ have the same fixed points in $\mathbb{P}^{1}(\mathbb{C})$ iff $\mathbb{R}[\gamma]=\mathbb{R}\left[\gamma^{\prime}\right]$.
This means that a quadratic field $K \subset \mathbb{R}^{2 \times 2}$ is determined by its fixed points in $\mathcal{H} \cup \mathbb{R} \cup\{\infty\}$. The field is imaginary iff it has one fixed point in \mathcal{H} and real iff it has two in $\mathbb{R} \cup \infty$.

Numerically, the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with eigenvalues $\lambda, \lambda^{\prime}=a+d-\lambda$ corresponds to the fixed points $\frac{\lambda-d}{c}, \frac{a-\lambda}{c}$.
Définition 2. We say that an element γ of $\operatorname{PSL}_{2}(\mathbb{R})$ is
(i) elliptic if it has two complex conjugate fixed points;
(ii) hyperbolic if it has two distinct fixed points in $\mathbb{R} \cup\{\infty\}$;
(iii) parabolic if it has one single, real fixed point.

Since det $\gamma=1$, it is easy to see that γ is hyperbolic iff $|\operatorname{Tr} \gamma|>2$ (or its discriminant is <0), elliptic iff $|\operatorname{Tr} \gamma|<2$ (or its discriminant is >0), and parabolic iff $|\operatorname{Tr} \gamma|=2$ (or its discriminant is 0).

This means that, if γ is algebraic over \mathbb{Q}, then the algebra $\mathbb{Q}(\gamma)$ is an imaginary quadratic field if γ is hyperbolic, a real quadratic field (or $\mathbb{Q} \times \mathbb{Q}$) if γ is elliptic, and a local \mathbb{Q}-algebra if γ is parabolic.

Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{R})$ be a discrete subgroup. A point of \mathcal{H} / Γ is called elliptic if it is fixed by an elliptic element $\gamma \in \Gamma$.
Proposition 3. Let $z \in \mathcal{H} / \Gamma$ be an elliptic point. Then the stabilizer Γ_{z} of z in Γ is a finite cyclic group.
Proof. Let $g \in \mathrm{SL}_{2}(\mathbb{R})$ such that $g \cdot i=z$. Then $g^{1} \Gamma_{z} g$ fixes i, and hence included in the stabilizer of i in $\mathrm{SL}_{2}(\mathbb{R})$. This stabilizer is the group $\mathrm{SO}_{1}(\mathbb{R}) \simeq \mathbb{R} / 2 \pi \mathbb{Z}$. Any discrete subgroup of this compact group is finite and cyclic. \triangleleft
Proposition 4. Let $\gamma \in \mathbb{R}^{2 \times 2}$ be entire over \mathbb{Z} and or finite order. Then the order of γ is either 2, 3, 4, or 6 . (The order of γ in $\mathrm{PGL}_{2}(\mathbb{Z})$ is either 2 or 3).
Proof. Both eigenvalues of γ are entire over \mathbb{Z} and the norm is ± 1, so that the eigenvalues are $\pm e^{ \pm i \theta}$ for some $\theta \in \mathbb{R}$. This implies that $\operatorname{Tr} \theta=2 \cos \theta$. Since this is also an integer, the only possibilities for the characteristic polynomial of γ are $x^{2} \pm 1, x^{2} \pm x \pm 1$, and $(x \pm 1)^{2} . \triangleleft$

2 Quaternions and complex-multiplication points

2.1 Quadratic fields inside quaternion algebras

Let B be a quaternion algebra over \mathbb{Q}. For any quadratic field $K \subset B$ with non-trivial automorphism σ, we know (by Skolem-Noether) that there exists an element $j \in B \backslash 0$ such that, for all $x \in K, j x=\sigma(x) j$, and $j^{2}=\beta \in \mathbb{Q}$. (Moreover, j is determined up to multiplication by K^{\times}). This gives the following map $B \hookrightarrow K^{2 \times 2}: x \in K \mapsto$ $\left(\begin{array}{cc}x & 0 \\ 0 & \sigma(x)\end{array}\right), j \mapsto\left(\begin{array}{ll}0 & j^{2} \\ 1 & 0\end{array}\right)$. This implies that $x+j y \in B \mapsto\left(\begin{array}{cc}x & j^{2} \sigma(y) \\ y & \sigma(x)\end{array}\right)$ and we easily check that this is an algebra homomorphism. This map extends to a splitting $B \otimes_{\mathbb{Q}} K \simeq K^{2 \times 2}$.
Proposition 5. Let $L=\mathbb{Q}[\sqrt{D}]$ be a quadratic extension of \mathbb{Q} and B / \mathbb{Q} be a quaternion algebra such that $B \subset L^{2 \times 2}$. Then B contains a sub-field isomorphic to L.
Proof. Let $\{i, j\}$ be a quaternionic basis of B over \mathbb{Q} : that is, $i^{2}=c, j^{2}=d \in \mathbb{Q}$, and $\operatorname{Tr} i=\operatorname{Tr} j=\operatorname{Tr} i j=0$. Since $L^{2 \times 2}$ is split over L, it is isomorphic to $(1, c / L)$, and has therefore a quaternionic basis $\{i, \varepsilon\}$ with $\varepsilon^{2}=1$. Since $\{i, j\}$ is another quaternionic basis of L, we have $j \in L[i] \cdot \varepsilon$, or $j=a \varepsilon$ with $a \in L[i]$. Moreover, we see that $d=j^{2}=a \varepsilon a \varepsilon=a \bar{a} \varepsilon^{2}=N_{L[i] / L}(a) \in \mathbb{Q}$.

We now prove the following lemma: let $z \in L[i]$ such that $N_{L[i] / L}(z) \in \mathbb{Q}$. Then $z \in \mathbb{Q}[i]^{\times} \cdot \mathbb{Q}[i \sqrt{D}]^{\times}$. We write $z=x+y \sqrt{D}$ with $x, y \in \mathbb{Q}[i]$. Since $N_{L[i] / L}(z)=\left(x+_{y} \sqrt{D}\right)(\bar{x}+\bar{y} \sqrt{D}) \in \mathbb{Q}$, we see that $(x \bar{y}+\bar{x} y)=0$. This means that $y / x \in i \mathbb{Q}$, or that $y=i t x$ with $t \in \mathbb{Q}$. We then have $z=x+y \sqrt{D}=x(1+i \sqrt{D} t)$ as required.

Applying this lemma to a, we see that we may write $u j=(p+i \sqrt{D} q) \varepsilon$ with $u \in \mathbb{Q}[i]^{\times}$, which means that $(u j)^{2}=$ $\left(p^{2}-c D q^{2}\right)$. Consequently:

$$
\begin{equation*}
B \simeq\left(\frac{c, p^{2}-c D q^{2}}{\mathbb{Q}}\right) \simeq\left(\frac{p^{2} c, c^{2} q^{2} D-p^{2} c}{\mathbb{Q}}\right) \simeq\left(\frac{\frac{p^{2}}{c q^{2}}, D-\frac{p^{2}}{c q^{2}}}{\mathbb{Q}}\right) \tag{1}
\end{equation*}
$$

In this last basis, we then have $i^{2}+j^{2}=D$, so that $\mathbb{Q}[i+j] \simeq L \subset B$ as required. \triangleleft

2.2 Complex multiplication points

Let B be an indefinite quaternion algebra over \mathbb{Q}. We fix a real quadratic $K \supset \mathbb{Q}$ and choose one of the two embeddings $K \subset \mathbb{R}$. The construction of 2.1 then defines an unique map $\eta: B \rightarrow \mathbb{R}^{2 \times 2}$. (Note that the image of $j K$ is well-defined!). Let also \mathcal{O} be an order of B.

For any $z \in \mathbb{C}$, we write $\Lambda(z)$ for the lattice $\eta(\mathcal{O}) \cdot\binom{z}{1}$ of \mathbb{C}^{2}. Let $A(z)$ be the polarized abelian surface $\mathbb{C}^{2} / \Lambda(z)$.
We say that z has complex multiplication by $L \subset B$ if it is the fixed point of $\eta(L)$, or equivalently if $\eta(L) \cdot \Lambda(z)=$ $\Lambda(z)$.

Théorème 6. Let $z \in \mathbb{C}$. The following are equivalent.
(i) The point z has complex multiplication (by an imaginary quadratic field L).
(ii) The abelian surface $A(z)$ is isogenous to the square of an elliptic curve E, having complex multiplication (by L).
(iii) The ring $\operatorname{End}_{\mathbb{Q}}(A)$ is isomorphic to $L^{2 \times 2}$.
(iv) The ring of $Q M$-automorphisms $\operatorname{End}_{B}(A)$ is not reduced to \mathbb{Q}.

Proof. (ii) \Rightarrow (iii). If $A(z) \sim E \times E$ then $\operatorname{End}_{\mathbb{Q}}(A(z)) \simeq \operatorname{End}_{\mathbb{Q}}^{2 \times 2}$.
(iii) \Rightarrow (ii). By Falting's proof of the Tate conjecture for abelian varieties over number fields, we know that, for ℓ prime,

$$
\operatorname{Hom}_{\mathbb{Q}}(A, E \times E) \otimes \mathbb{Z}_{\ell} \simeq \operatorname{Hom}_{\mathrm{Gal}}\left(T_{\ell}(A), T_{\ell}(E) \times T_{\ell}(E)\right)
$$

The assumption (iii) means that the right-hand side contains an isomorphism ι. The image of ι on the left-hand side is an isogeny.
(iii) \Rightarrow (ii), elementary proof. Since $\operatorname{End}_{\mathbb{Q}}(A)$ is not a division algebra, A is not simple. This means that there exists an isogeny $A \sim E_{1} \times E_{2}$, where E_{1}, E_{2} are elliptic curves. If $E_{1} \nsim E_{2}$ then $\operatorname{End}_{\mathbb{Q}} A \simeq \operatorname{End}_{\mathbb{Q}} E_{1} \times \operatorname{End}_{\mathbb{Q}} E_{2}$, which is at most the product of two quadratic fields and therefore does not contain the quaternion algebra B. This proves that E_{1} is isogenous to E_{2}, so that $A \sim E_{1}^{2}$.
(iv) \Rightarrow (i). Let $L=\operatorname{End}_{B} A(z)$ and assume that $L \neq \mathbb{Q}$. For any $\lambda \in L \backslash \mathbb{Q}$, the multiplication-by- λ map defines a map $m_{\lambda}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, stabilizing $\Lambda(z)$ (by the universal property of the universal cover of $A(z)$). By the usual properties of abelian varieties, m_{λ} is a \mathbb{C}-linear map. Since $m_{\lambda}(z) \in \eta(\mathcal{O}) \cdot z$, there exists $c \in \mathcal{O}$ such that $m_{\lambda}(z)=\eta(c) z$. Moreover, since λ is a B-endomorphism, m_{λ} commutes with all elements of $\eta(\mathcal{O})$, which implies that c lies in the center of B. Since B is a central simple \mathbb{Q}-algebra, this means that $c \in \mathbb{Q}$. In other words, z is fixed by the homographic action of λ. We just showed that z has complex multiplication by L.
(i) \Rightarrow (iv), not-working proof. We write $X=\eta\left(\mathcal{O}^{\times+}\right) \backslash \mathcal{H}$ for the Shimura curve and $\mathcal{A} \rightarrow X$ for the relative abelian surface with quaternionic multiplication by \mathcal{O}.

Let $\iota:\{z\} \hookrightarrow X$ be the injection of the point z. We then know that $A(z)=\mathcal{A} \times_{X, \iota}\{z\}$ is the fibre at z of the surface \mathcal{A}.

Assume that z has complex multiplication by a ring R. This means that there exists $\lambda \in H \backslash \mathbb{Q}$ such that $\eta(\lambda) \cdot z=$ z. Write $\gamma=\eta(\lambda) \in \mathbb{R}^{2 \times 2}$; then $\gamma \circ \iota=\iota$, Let $\mathcal{A}_{\gamma}=\mathcal{A} \times_{X} \gamma$ be the pull-back of \mathcal{A} along γ, and $A_{\gamma}=A(z) \times_{\mathcal{A}} \mathcal{A}_{\gamma}$. Since $\gamma \circ \iota=\iota, A_{\gamma}$ is the fibre of \mathcal{A}_{γ} above z, and therefore isogenous (as a B-QM surface) to $A(z)$.

Therefore, the scalar $\lambda \in H \backslash \mathbb{Q}$ defines an endomorphism m_{λ} of $A(z)$. We see that m_{λ} has the same characteristic polynomial as λ, which means that m_{λ} is an embedding of R in B.
(i) \Rightarrow (iv). Assume that z has complex multiplication by an element $x \in B \backslash \mathbb{Q}$. Since $\operatorname{Im} z>0, L=\mathbb{Q}(x)$ is imaginary quadratic over \mathbb{Q}. Write $\eta(x)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then $x \cdot\binom{z}{1}=(c z+d)\binom{z}{1}$, so that $u=(c z+d)$ is an endomorphism of $\Lambda(z)$. Moreover, since u is a homothety, it commutes to B, so that it is a B-endomorphism of $A(z)$. Finally, since L is imaginary, $L \neq K$, therefore $c \neq 0$ and $u \notin \mathbb{R}$.
(iii) \Rightarrow (iv). By Prop. 5, since $B \subset L^{2 \times 2}, B$ contains a sub-field L^{\prime} isomorphic to L. Write $L^{\prime}=\mathbb{Q}[\sqrt{D}]$: then the element $\sqrt{D} \in B$ is diagonalizable over \mathbb{Q}, and therefore of the form $\left(\begin{array}{rl}\sqrt{D} & -\sqrt{D}\end{array}\right)$ in some basis of L^{2}. This shows that there exists maps $L \subset B \subset L^{2 \times 2}$ such that the composition is the map $x \mapsto\left(\begin{array}{ll}x & \sigma(x)\end{array}\right)$, where σ is the non-trivial automorphism of L / \mathbb{Q}. We now see that the L-homothety matrices commute with all elements of B, so that $\operatorname{End}_{B} A=L$.
(iv) \Rightarrow (iii) Let $R=\operatorname{End}_{\mathbb{Q}} A \supset B$. Then $C=\operatorname{End}_{B} A$ is the commutant of B in R. Since B is central simple, if $R=B$ then $C=\mathbb{Q}$, which is impossible. Hence $R \neq B . \triangleleft$

Let $z \in X(\mathcal{O})$ be a CM point by the imaginary quadratic field $L \subset B$. We say that z has complex multiplication by $\mathcal{A}=L \cap \mathcal{O}$. For any quadratic order \mathcal{A} over \mathbb{Z}, we write $\operatorname{CM}(\mathcal{O}, \mathcal{A})$ for the set of points of $X(\mathcal{O})$ having complex multiplication by \mathcal{A}.

Proposition 7. A point $z \in X(\mathcal{O})$ is elliptic iff it has complex multiplication by a imaginary quadratic order isomorphic to one of the two quadratic orders $\mathbb{Z}[\sqrt{-1}]$ or $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$.
Proof. The elements $\gamma \in \mathcal{O}$ fixing $z \in \mathcal{H} / \mathcal{O}$ are entire over \mathbb{Z} and of finite order, and therefore of order 2, 3, 4 or 6 in an imaginary quadratic field. \triangleleft

Proposition 8. Let $\mathcal{A}, \mathcal{A}^{\prime} \subset \mathcal{O}$ be two imaginary quadratic orders. The CM points associated with \mathcal{A} and \mathcal{A}^{\prime} coincide iff \mathcal{A}^{\prime} is conjugated to \mathcal{A} by an inner automorphism of $\mathcal{O}: \mathcal{A}^{\prime}=x^{-1} \mathcal{A} x$ for $x \in \mathcal{O}^{\times+}$.
Proof. Assume $\mathcal{A}^{\prime}=x^{-1} \mathcal{A} x$. Let z be a fixed point of $\mathcal{A}: \eta(a) z=z$ for $a \in A$. Then, for $a^{\prime}=x^{-1} a x \in \mathcal{A}^{\prime}$, $\eta\left(a^{\prime}\right)\left(\eta\left(x^{-1}\right) z\right)=\eta\left(x^{-1}\right) z$, so that $x^{-1} z$ has complex multiplication by \mathcal{A}^{\prime}.

Conversely, assume that two quadratic orders $\mathcal{A}, \mathcal{A}^{\prime}$ have conjugate fixed points $z, z^{\prime}=\sigma z$. Replacing \mathcal{A}^{\prime} by $\sigma \mathcal{A}^{\prime} \sigma^{-1}$, we may assume that $z=z^{\prime}$. We then use Prop. 1 to conclude. \triangleleft

2.2.1 Examples.

Let B_{6} be the quaternion algebra over \mathbb{Q} ramified at the primes 2 and 3 : for example, $B_{6}=\left(\frac{2,3}{\mathbb{Q}}\right)$. Let $i, j \in B_{6}$ such that $i^{2}=2, j^{2}=3, i j+j i=0$. A maximal order of B_{6} is $\mathcal{O}=\left\langle 1, i, \frac{1+i+j}{2}, \frac{j+i j}{2}\right\rangle$. We fix the real quadratic field $K=\mathbb{Q}(\sqrt{2}) \subset B_{6}$ which gives the embedding

$$
\eta: B_{6} \longrightarrow \mathbb{R}^{2 \times 2}, i \longmapsto\left(\begin{array}{cc}
\sqrt{2} & \tag{2}\\
& -\sqrt{2}
\end{array}\right), j \longmapsto\left(\begin{array}{ll}
1_{1} & 3
\end{array}\right), i j \longmapsto\left(\begin{array}{ll}
& -3 \sqrt{2} \\
\sqrt{2} &
\end{array}\right)
$$

Let $\alpha=\frac{i+3 i j}{2}$; then we check that $\alpha^{2}=-13$, so that $\mathbb{Q}(\alpha) \simeq \mathbb{Q}(\sqrt{-13}) \subset B_{6}$. We have $\eta(\alpha)=\frac{\sqrt{2}}{2}\left(\begin{array}{ll}1 & -9 \\ 3 & -1\end{array}\right)$, so that the fixed point of $\mathbb{Q}(\alpha)$ is the image in $X(\mathcal{O})$ of $z(\alpha)=\frac{1+\sqrt{-26}}{3}$.

Let $\beta=\frac{i+i j}{2}$; then $\beta^{2}=-1$, so that $\mathbb{Q}(\beta)=\mathbb{Q}(\sqrt{-1}) \subset B_{6}$. We have $\eta(\beta)=\frac{\sqrt{2}}{2}\left(\begin{array}{ll}1 & -3 \\ 1 & -1\end{array}\right)$, so that the fixed point of $\mathbb{Q}(\beta)$ is the image in $X(\mathcal{O})$ of $z(\beta)=1+\sqrt{-2}$.

Unramified case. Let $B_{1}=(1,1 / \mathbb{Q})=\mathbb{Q}^{2 \times 2}$ be the split quaternion algebra over \mathbb{Q}. We write $i=\left(\begin{array}{ll}1 & -1\end{array}\right)$, $j=\left(\begin{array}{ll}1 & 1\end{array}\right), i j=\left(\begin{array}{ll}-1 & 1\end{array}\right)$, so that $i^{2}=j^{2}=1$ and $(i j)^{2}=-1$. Let $\mathcal{O}(N)=\left\langle 1, \frac{1+i}{2}, \frac{N+1}{2} j, \frac{j+i j}{2}\right\rangle$. We check that $\mathcal{O}(N)$ is an order of B_{1}. Its image $\eta(\mathcal{O}(N))$ is the congruence group $\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}), c \equiv 0(\bmod N)\right\}$. Therefore, the Shimura curve $X(\mathcal{O}(N))$ is the classical modular curve $X_{0}(N)$.

Let $d \in \mathbb{Z}$ and $\delta=\frac{d+1}{2} i+\frac{d-1}{2} i j \in \mathcal{O}$. The fixed point of $\eta(\delta)=\left(l_{1} d\right)$ in \mathcal{H} is $z=\sqrt{d}$, which is imaginary if $d<0$.

3 In characteristic p : supersingular points

Let A be an abelian surface defined over the field k, with quaternionic multiplication by the indefinite algebra B, i.e. equipped with an (injective) morphism $B \hookrightarrow R=$ End $A \otimes \mathbb{Q}$.

Théorème 9. Let A be an abelian surface over k, with $Q M$ by the indefinite quaternion algebra B. Then either
(i) A is isogenous to the square E^{2} of an elliptic curve, or
(ii) A is simple and $\operatorname{End}_{\mathbb{Q}} A=B$.

If A is not simple, then A is isogenous to a product $E_{1} \times E_{2}$ of two elliptic curves. If $E_{1} \nsim E_{2}$ then since $R=$ $\operatorname{End}_{\mathbb{Q}} E_{1} \times \operatorname{End}_{\mathbb{Q}} E_{2}$, we have at least one injection $B \hookrightarrow \operatorname{End}_{\mathbb{Q}} E_{i}$, so that the curve E_{i} is supersingular. However, in this case, the endomorphism ring of E_{1} is the quaternion algebra $B_{p, \infty}$ ramified at $\{p, \infty\}$. Since $B_{p, \infty}$ is a definite quaternion algebra, we have $B \neq B_{p, \infty}$, which is impossible. This proves that $E_{1} \sim E_{2}$.

We therefore have $A \sim E^{2}$ and $R=\operatorname{End}_{\mathbb{Q}} A=\left(\operatorname{End}_{\mathbb{Q}} E\right)^{2 \times 2}$. Let $C=\operatorname{End}_{\mathbb{Q}} E$. If $C=\mathbb{Q}$ then $R=\mathbb{Q}^{2 \times 2}$ is a (split) quaternion algebra over \mathbb{Q} and there exists a map $B \rightarrow R$ iff $B=R$. If C is an imaginary quadratic field then it must split B. The last case is when C is the quaternion algebra $B_{p, \infty}$. We can show that, for any indefinite quaternion algebra B and any prime p, there exists an embedding $B \hookrightarrow\left(B_{p, \infty}\right)^{2 \times 2}$.

If A is simple, then its endomorphism algebra $R=\operatorname{End}_{\mathbb{Q}} A$ is a simple algebra. Let K be the center of R. Since $\operatorname{dim} A=2$, the field K is an extension of \mathbb{Q} of degree 1,2 or 4 .

If $[K: \mathbb{Q}]=4$ then $R=K$ and R is commutative, which is impossible since $B \subset R$.
If $K=\mathbb{Q}$ then, since R is central simple over \mathbb{Q}, it is a quaternion algebra over \mathbb{Q}, hence $R=B$.
If K is a real quadratic field, then R is a quaternion algebra over K, containing B and therefore $B \otimes K$. Since A is simple, R is not split over K. Therefore, K does not split B, and R contains a real quadratic extension K^{\prime} of K, which is therefore a totally real quartic extension of \mathbb{Q}. By [Mumford, Corollary p. 191], this implies that $4 \mid \operatorname{dim} A$, which is impossible.

Assume that K is an imaginary quadratic field. Then since R is a quaternion algebra over K containing B, we can show that $R=B \otimes_{\mathbb{Q}} K$.

We can show that this last case may only happen when the base field k has characteristic $p>0$. End $\mathbb{Q}_{\mathbb{Q}} A$ contains a CM quartic field L. If $p=0$ then A would have its endomorphism ring equal to the CM field L; this impossible since $\operatorname{End}_{\mathbb{Q}} A$ is not commutative.

Let \mathfrak{q} be a place of K that does not divide p. $\mathbf{X X X}$ (by Honda-Tate?) Then \mathfrak{q} is split in R : $R \otimes_{K} K_{\mathfrak{q}} \simeq K_{\mathfrak{q}}^{2 \times 2}$. Since R is a division algebra, it is not split at all places of K, and is therefore ramified at the two places $\mathfrak{p}, \mathfrak{p}^{\prime}$ dividing p. This means that the discriminant of R over K is $\mathfrak{p p}^{\prime}=p$.

Assume that p does not divide the discriminant of B / \mathbb{Q}. Then the embedding $B \hookrightarrow R$, when tensoring by \mathbb{Q}_{p}, gives an embedding

$$
\begin{equation*}
B \otimes_{\mathbb{Q}} \mathbb{Q}_{p}=\mathbb{Q}_{p}^{2 \times 2} \quad c \longrightarrow \quad R \otimes_{\mathbb{Q}} \mathbb{Q}_{p}=R \otimes_{K}\left(K_{\mathfrak{p}} \oplus K_{\mathfrak{p}^{\prime}}\right) . \tag{3}
\end{equation*}
$$

Since the algebra $\mathbb{Q}_{p}^{2 \times 2}$ has nilpotent elements while $R_{\mathfrak{p}} \oplus R_{\mathfrak{p}^{\prime}}$ does not, this is a contradiction.
Therefore, p divides $\operatorname{disc} B / \mathbb{Q}$. This means that $B \otimes_{\mathbb{Q}} \mathbb{Q}_{p}$ is a division algebra. The Tate module $T_{p}(A)$ has dimension 0,1 or 2 . The map $B \hookrightarrow \operatorname{End}_{\mathbb{Q}}(A)$ then gives a map $\rho: B \otimes \mathbb{Q}_{p} \rightarrow \operatorname{End}_{\mathbb{Q}_{p}}\left(T_{p}(A) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}\right)$. If $T_{p}(A) \neq 0$, then $\rho(1)=1$ and ρ is therefore injective. This gives an embedding $B_{p} \hookrightarrow \mathbb{Q}_{p}^{i \times i}$ for $i \leqslant 2$, which is impossible.

